
JSON AND POSTGRES:
BETTER TOGETHER
Vibhor Kumar
V.P. Performance Engineering

1

AGENDA
● Introduction to EDB
● Intro to JSON and HSTORE
● JSON History in Postgres
● JSON Data Types, Operators and Functions
● JSON and JSONB – when to use which one?
● JSONB and Node.JS – easy as pie
● NoSQL Performance in Postgres – fast as

greased lightning
● Say ‘Yes’ to ‘Not only SQL’
● Useful resources

2

3

THE WAY FORWARD

Accelerate your
open source transformation

WHO WE ARE FOR

Business leaders
who see data as

strategic

Technologists
who want the
most versatile
technologies

The money
managers who
want to free up

budget

4

5

The heartbeat of Postgres

75% of F500 Postgres customers
Most strategic usage

30% of Postgres code contributed
Source of innovation

1400+ Global customers
Customer requirements influencing the future
direction of Postgres

>300 Dedicated Postgres engineers
Unparalleled expertise

3 of 7 Postgres Core Team Members
Central source of community influence and expertise

6

We know closing the gap
requires a
Postgres
Acceleration
Strategy
for powering modern
enterprise applications

Enterprise-Grade DBMS Capabilities
Power your enterprise APPS

Flexible Deployment Choice
Own your data

Risk Mitigation
Go as fast as you can

7

Enterprise-Grade DBMS Capabilities
Power your enterprise apps

Extreme high availability
High performance at scale
Advanced security
Migration automation

Flexible Deployment Choice
Own your data

Deploy anywhere:
multi-cloud, on prem, hybrid
Containers, VM’s

Risk Mitigation
Go as fast as you can

Hire the best Postgres expertise
Proven best practices

We know closing the gap
requires a
Postgres
Acceleration
Strategy
for powering modern
enterprise applications

POSTGRES - FLEXIBLE DATA TYPES

● HSTORE
○ Key-value pair
○ Simple, fast and easy
○ Postgres v 8.2 – pre-dates many NoSQL-only solutions
○ Ideal for flat data structures that are sparsely

populated
● JSON

○ Hierarchical document model
○ Introduced in Postgres 9.2

● JSONB
○ Binary version of JSON
○ Faster, more operators and even more robust
○ Introduced Postgres 9.4

8

POSTGRES: KEY-VALUE STORE

● Supported since 2006, the HStore contrib module
enables storing key/value pairs within a single column

● Allows you to create a schema-less, ACID compliant
data store within Postgres

● Create single HStore column and include, for each row,
only those keys which pertain to the record

● Add attributes to a table and query without advance
planning

● Combines flexibility with ACID compliance

9

HSTORE EXAMPLES
● Create a table with HSTORE field

CREATE TABLE hstore_data (data HSTORE);

● Insert a record into hstore_data

INSERT INTO hstore_data (data) VALUES (‘
"cost"=>"500",
"product"=>"iphone",
"provider"=>"apple"');

● Select data from hstore_data

SELECT data FROM hstore_data ;
--
"cost"=>"500”,"product"=>"iphone”,"provider"=>"Apple"
(1 row)

10

POSTGRES – DOCUMENT STORE

● JSON is the most popular data-interchange format on
the web

● Derived from the ECMAScript Programming Language
Standard (European Computer Manufacturers
Association).

● Supported by virtually every programming language
● New supporting technologies continue to expand

JSON’s
○ Node.js

● Postgres has a native JSON data type (v9.2) and a
JSON parser and a variety of JSON functions (v9.3)

● Postgres have a JSONB data type with binary storage
and indexing (more capability coming in v15)

11

JSON EXAMPLES

● Creating a table with a JSONB field

CREATE TABLE json_data (data JSONB);

● Simple JSON data element:

{"name": "Apple Phone", "type": "phone", "brand": "ACME", "price": 200,
"available": true, "warranty_years": 1}

● Inserting this data element into the table json_data

INSERT INTO json_data (data) VALUES
(’ { "name": "Apple Phone",

"type": "phone",
"brand": "ACME",
"price": 200,
"available": true,
"warranty_years": 1

} ')

12

A QUERY THAT RETURN JSON DATA

SELECT data FROM json_data;
data
--
 {"name": "Apple Phone", "type": "phone", "brand": "ACME", "price": 200,
"available": true, "warranty_years": 1}

13

JSON(B) AND ANSI SQL IN POSTGRES – A NATURAL
FIT

● JSON is naturally integrated with ANSI SQL in
Postgres

● JSON and SQL queries use
the same language, the same planner, and the same
ACID compliant transaction framework

● JSON and HSTORE are elegant and easy to use
extensions of the underlying object-relational model

14

JSON AND ANSI SQL – EXAMPLE

SELECT DISTINCT
product_type,
data->>'brand' as Brand,

 data->>'available' as Availability
FROM json_data
JOIN products
ON (products.product_type=json_data.data->>'name')
WHERE json_data.data->>'available'=true;

 product_type | brand | availability
---------------------------+-----------+------------
--
 AC3 Phone | ACME | true

15

ANSI SQL

JSON

No need for programmatic logic to combine SQL and NoSQL in the
application – Postgres does it all

BRIDGING BETWEEN SQL AND JSON
Simple ANSI SQL Table Definition

CREATE TABLE products (id integer, product_name text);

Select query returning standard data set

SELECT * FROM products;

 id | product_name
----+--------------
 1 | iPhone
 2 | Samsung
 3 | Nokia

Select query returning the same result as a JSON data set

SELECT ROW_TO_JSON(products) FROM products;

 {"id":1,"product_name":"iPhone"}
 {"id":2,"product_name":"Samsung"}
 {"id":3,"product_name":"Nokia”}

16

JSON DATA TYPES
• Number:

− Signed decimal number that may contain a fractional part and may use exponential notation.
− No distinction between integer and floating-point

• String
− A sequence of zero or more Unicode characters.
− Strings are delimited with double-quotation mark
− Supports a backslash escaping syntax.

• Boolean
− Either of the values true or false.

• Array
− An ordered list of zero or more values,
− Each values may be of any type.
− Arrays use square bracket notation with elements being comma-separated.

• Object
− An unordered associative array (name/value pairs).
− Objects are delimited with curly brackets
− Commas to separate each pair
− Each pair the colon ':' character separates the key or name from its value.
− All keys must be strings and should be distinct from each other within that object.

• Null
− An empty value, using the word null

17

JSON is defined per RFC – 7159
For more detail please refer
http://tools.ietf.org/html/rfc7159

JSON DATA TYPES EXAMPLE

{
 "firstName": "John", -- String Type
 "lastName": "Smith", -- String Type
 "isAlive": true, -- Boolean Type
 "age": 25, -- Number Type
 "height_cm": 167.6, -- Number Type
 "address": { -- Object Type
 "streetAddress": "21 2nd Street”,
 "city": "New York”,
 "state": "NY”,
 "postalCode": "10021-3100”
 },
 "phoneNumbers": [// Object Array
 { // Object
 "type": "home”,
 "number": "212 555-1234”
 },
 {
 "type": "office”,
 "number": "646 555-4567”
 }
],
 "children": [],
 "spouse": null // Null
}

18

POSTGRES JSONB TIMELINE (KEY HIGHLIGHTS)
● PG 9.2: Introduction of JSON (JSON text; no indexes)
● PG 9.4: Introduction of JSONB (canonical binary format; indexes)
● PG 9.5: jsonb_set() jsonb_pretty()to_jsonb(), jsonb_object(),

 jsonb_build_object(), jsonb_build_array(), jsonb_agg(), and
jsonb_object_agg(), jsonb || operator, jsonb_strip_nulls() ...

● PG 9.6: jsonb_insert()
● PG 10: Full text search support for JSONB
● PG 11: jsonb_plpython
● PG 12: json_path (like xpath in XML; part of SQL Standard 2016)
● PG 13: jsonpath.datetime()
● PG 14: JSONB subscripting can be used to extract and assign to portions of

JSONB.

19

POSTGRES JSONB CAPABILITIES

● Integration into same transactional context
● Fully ACID compliant
● Rich set of indexing technology (GIN, B-TREE, GIST, Trigram, Hash --- select the

right index for the right operation)
● Rich set of functions and operators
● JSONPATH (similar to XPATH)
● Outperforms MongoDB in many use cases

20

21

INSERT INTO USERS (customer_nbr, details)
VALUES(

1,'
{
"firstName": "John", "lastName": "Smith",
"isAlive": true,
"height_cm": 165.6,
"address":

 {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "ZIPCode": "10021-3100",
 "country": "USA"
 },

"phoneNumbers":
[

 {
 "type": "home",
 "number": "212 234-5678"
 },
 {
 "type":"office",
 "number": "646 555-4567"
 }

]
}

 ');

Array of phone
numbers

Flexible address
specification

EXAMPLE 1 – USING
JSON FOR
PERSONALIZATION

22

EXAMPLE 1 – USING
JSON FOR
PERSONALIZATION

INSERT INTO USERS (customer_nbr, details)
VALUES (

2,'
 {
 "firstName": "Joan", "lastName": "of Arc",
 "isAlive": false,
 "height_cm": 162,
 "address":

 {
 "city": "Rouen",
 "codePostal": "7600",
 "country": "FRANCE"
 },

 "phoneNumbers":[]
}
 ');

Array of phone
numbers

Flexible address
specification

23

Do our records have a phone number for Joan of Arc?

SELECT jsonb_path_query(
details, '$.phoneNumbers'
)

FROM users
WHERE

 jsonb_path_exists (
details, '$.lastName

?
(@ == "of Arc")');

● Dots to move into the tree
● Brackets access a given array

member coupled with a position.
● Variables, with ‘$’ representing a

JSON text and ‘@’ for result path
evaluations.

● ? applies a filter

EXAMPLE 2: USING JSON_PATH

24

EXAMPLE 2: USING JSON_PATH
Get the phone numbers for customer ‘Smith’

SELECT jsonb_pretty
(jsonb_path_query(
details,
'$.phoneNumbers'))
FROM users
WHERE
jsonb_path_exists (
details,
'$.lastName ? (@ == "Smith")'
);

 Result:
 [
 {
 "type": "home",
 "number": "212 234-5678"
 },
 {
 "type": "office",
 "number": "646 555-4567"
 }
]

25

JSONB AND Node.js
- EASY AS π

JSON OR JSONB?

• JSON/JSONB is more versatile than HSTORE

• JSON or JSONB?
− if you need any of the following, use JSON

− Storage of validated json, without processing or indexing it
− Preservation of white space in json text
− Preservation of object key order Preservation of duplicate object keys
− Maximum input/output speed

• For any other case, use JSONB

26

PERFORMANCE COMPARISON: POSTGRESQL 11/MongoDB 4.0

● Benchmarks published in June 2019 (follow up to similar analysis in 2014)

● Executed by ongres.com

● Using m5.4xlarge (16 vcores) on AWS EC2

● Details at (including the code and the engine to verify the findings)

http://info.enterprisedb.com/Performance-Benchmarks-PostgreSQL-vs-MongoDB.html

27

http://info.enterprisedb.com/Performance-Benchmarks-PostgreSQL-vs-MongoDB.html

PERFORMANCE COMPARISON: POSTGRESQL 11/MongoDB 4.0
Complex Transaction Set

PostgreSQL is 4-15 times faster than
MongoDB

28

PERFORMANCE COMPARISON: POSTGRESQL 11/MongoDB 4.0
OLTP (sysbench) - Many Small Transactions - Small Data Set

PGBouncer (connection pooler) is key
to manage highly concurrent access

29

PERFORMANCE COMPARISON: POSTGRESQL 11/MongoDB 4.0
OLTP (sysbench) - Many Small Transactions - Large Data Set

PGBouncer (connection pooler) is key
to manage highly concurrent access

30

ULTIMATE FLEXIBILITY
WITH POSTGRES

31

Database Development
(PL/SQL, PL/pgSQL, PL/Tcl,

PL/Perl …)

Structured Data

On-Premise
Deployment

Web 2.0/3.0

Unstructured Data

Cloud Deployment

● Postgres overcomes many of the standard objections “It can’t be done with a
conventional database system”

● Postgres
○ Combines structured data and unstructured data (ANSI SQL and

JSON/HSTORE)
○ Is faster (for many workloads) than than the leading NoSQL-only solution
○ Integrates easily with Web 2.0 application development environments
○ Can be deployed on-premise or in the cloud

Do more with Postgres – the Enterprise NoSQL Solution

SAY YES TO ‘NOT ONLY SQL’

32

MICHAEL STONEBRAKER & MongoDB

3 blogs @ EDB from the original creator of PostgreSQL

● “Schema Later” Considered Harmful: If you have data that will require a schema at some point, you are
way better off doing the work up front to avoid data debt, because the cost of schema later is a lot
higher

● Comparison of JOINS: MongoDB vs. PostgreSQL: The conclusion is that MongoDB joins are very
brittle (when things change, application programs must be extensively recoded), and often MongoDB
offers very poor performance, relative to Postgres

● Those Who Forget the Past Are Doomed to Repeat It: If you want to insulate yourself from the changes
that business conditions dictate, use a relational DBMS. If you want the successor to the successor to
your job to thank you for your wise decision, use a relational model.

33

USEFUL
RESOURCES

● The Postgres and MongoDB Report
● The CRUD of JSON in Postgres
● Building JSON Documents from Relational

Tables
● Building JSON document relational tables
● Hear From EDB Customers Why Postgres is

Their Preferred DBMS
● Liquibase and EDB extend CI/CD to EDB

PostgreSQL Advanced Server
● Managing Data Changes to your PostgreSQL

Database with Liquibase

34

https://info.enterprisedb.com/white-paper_Get-the-Postgres-and-MongoDB-report.html
https://www.enterprisedb.com/blog/crud-json-postgresql
https://www.enterprisedb.com/blog/building-json-documents-relational-tables
https://www.enterprisedb.com/blog/building-json-documents-relational-tables
https://www.enterprisedb.com/blog/building-json-documents-relational-tables
https://www.enterprisedb.com/blog/hear-edb-customers-why-postgres-their-preferred-dbms
https://www.enterprisedb.com/blog/hear-edb-customers-why-postgres-their-preferred-dbms
https://www.enterprisedb.com/blog/liquibase-and-edb-extend-cicd-edb-postgresql-advanced-server
https://www.enterprisedb.com/blog/liquibase-and-edb-extend-cicd-edb-postgresql-advanced-server
https://www.enterprisedb.com/blog/managing-data-changes-your-postgresql-database-liquibase
https://www.enterprisedb.com/blog/managing-data-changes-your-postgresql-database-liquibase

35

THANK YOU

35

